Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
NPJ Vaccines ; 7(1): 166, 2022 Dec 17.
Article in English | MEDLINE | ID: covidwho-2185872

ABSTRACT

Experimental vaccines for the deadly zoonotic Nipah (NiV), Hendra (HeV), and Ebola (EBOV) viruses have focused on targeting individual viruses, although their geographical and bat reservoir host overlaps warrant creation of multivalent vaccines. Here we explored whether replication-incompetent pseudotyped vesicular stomatitis virus (VSV) virions or NiV-based virus-like particles (VLPs) were suitable multivalent vaccine platforms by co-incorporating multiple surface glycoproteins from NiV, HeV, and EBOV onto these virions. We then enhanced the vaccines' thermotolerance using carbohydrates to enhance applicability in global regions that lack cold-chain infrastructure. Excitingly, in a Syrian hamster model of disease, the VSV multivalent vaccine elicited safe, strong, and protective neutralizing antibody responses against challenge with NiV, HeV, or EBOV. Our study provides proof-of-principle evidence that replication-incompetent multivalent viral particle vaccines are sufficient to provide protection against multiple zoonotic deadly viruses with high pandemic potential.

4.
Nat Rev Microbiol ; 20(5): 299-314, 2022 05.
Article in English | MEDLINE | ID: covidwho-1526083

ABSTRACT

In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.


Subject(s)
COVID-19 , Chiroptera , Animals , Evolution, Molecular , Humans , Phylogeny , SARS-CoV-2/genetics
5.
Exp Results ; 1: e41, 2020.
Article in English | MEDLINE | ID: covidwho-1287725

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic is of global concern and has recently emerged in the US. In this paper, we construct a stochastic variant of the SEIR model to estimate a quasi-worst-case scenario prediction of the COVID-19 outbreak in the US West and East Coast population regions by considering the different phases of response implemented by the US as well as transmission dynamics of COVID-19 in countries that were most affected. The model is then fitted to current data and implemented using Runge-Kutta methods. Our computation results predict that the number of new cases would peak around mid-April 2020 and begin to abate by July provided that appropriate COVID-19 measures are promptly implemented and followed, and that the number of cases of COVID-19 might be significantly mitigated by having greater numbers of functional testing kits available for screening. The model is also sensitive to assigned parameter values and reflects the importance of healthcare preparedness during pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL